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This work presents a three-dimensional finite-element algorithm, based on the phase-field
model, for computing interfacial flows of Newtonian and complex fluids. A 3D adaptive
meshing scheme produces fine grid covering the interface and coarse mesh in the bulk.
It is key to accurate resolution of the interface at manageable computational costs. The
coupled Navier–Stokes and Cahn–Hilliard equations, plus the constitutive equation for
non-Newtonian fluids, are solved using second-order implicit time stepping. Within each
time step, Newton iteration is used to handle the nonlinearity, and the linear algebraic sys-
tem is solved by preconditioned Krylov methods. The phase-field model, with a physically
diffuse interface, affords the method several advantages in computing interfacial dynamics.
One is the ease in simulating topological changes such as interfacial rupture and coales-
cence. Another is the capability of computing contact line motion without invoking ad
hoc slip conditions. As validation of the 3D numerical scheme, we have computed drop
deformation in an elongational flow, relaxation of a deformed drop to the spherical shape,
and drop spreading on a partially wetting substrate. The results are compared with numer-
ical and experimental results in the literature as well as our own axisymmetric computa-
tions where appropriate. Excellent agreement is achieved provided that the 3D interface is
adequately resolved by using a sufficiently thin diffuse interface and refined grid. Since our
model involves several coupled partial differential equations and we use a fully implicit
scheme, the matrix inversion requires a large memory. This puts a limit on the scale of
problems that can be simulated in 3D, especially for viscoelastic fluids.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Interfacial dynamics is scientifically intriguing because of the coupling between hydrodynamics in the bulk and deforma-
tion of the interfaces. It is also taking on more practical significance with the recent technological advances in microengi-
neering and miniaturization. For example, drop and bubble dynamics has been a key element in designing microfluidic
devices [1], where the smaller length scales accentuates the interfacial forces. From a computational standpoint, the moving
internal boundaries present a numerical challenge, and two classes of methods have been developed to meet it: interface
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tracking and interface capturing [2]. The former deploys grid points or markers on the interface that track it each time step
[3–5]. The latter uses an auxiliary scalar field that distinguishes the fluid components. Thus, the onus of managing a moving
grid is replaced by that of computing a convection or convection–diffusion equation for the scalar field, typically on an Eule-
rian grid. Each approach has its advantages and limitations.

The phase-field method to be discussed in this paper is an interface-capturing method. It is distinguished from other
methods in its class by having a physical origin in a diffuse interface where the two fluid components mix to a limited extent
and store a mixing energy. Thus, the phase-field parameter / has a well defined physical meaning; its profile in the diffuse
interface may be related to van der Waals-type of long range forces [6], and the mixing energy gives rise to interfacial tension
[7]. Because of its energy-based formalism and the physical picture of the diffuse–interface model, it has some unique fea-
tures among interface-capturing methods [8]: (i) The evolution of the interface is self-consistent and requires no ad hoc
intervention such as the re-initialization in level set methods. (ii) The theory has an energy law that ensures well-posedness
in numerical computation [9,10]. (iii) The variational framework easily integrates interfacial treatment and non-Newtonian
rheology, as the latter is almost always derivable from a microstructural free energy [11]. (iv) It regularizes singular events
on the interfaces such as breakup [12], coalescence [6] and moving contact lines [13,14].

In recent years, several groups have successfully applied the phase-field method to two-phase flow simulations [e.g.
[7,15–18]]. These computations demonstrated that for the results to be quantitatively accurate, two conditions have to be
met. First, the interface should be sufficiently thin so that the theoretical model approaches the so-called sharp-interface
limit [19]. Second, this thin region must be adequately resolved by fine mesh; it typically requires some 10 grid points.
Otherwise, the interfacial layer is subject to unphysical distortions, the interfacial tension is inaccurate and the results
are unreliable. Thus, interfacial resolution is the bottleneck for phase-field computations. To address this issue, we have
developed AMPHI, a finite-element algorithm on an unstructured grid that is adaptively refined and coarsened as the inter-
face moves [20]. It has been applied so far to drop-interface partial coalescence [21], drop formation in microfluidic channels
[12], cell motion in capillary [22], defect dynamics in nematic liquid crystals [23] and defect-mediated self-assembly of
microdrops [24]. In particular, we have taken advantage of the variational formalism of the model to incorporate the
non-Newtonian rheology of complex fluids.

With a few exceptions [e.g. [18,25]], prior phase-field computations are in 2D planar and axisymmetric geometries. In
many situations, the two-dimensionality constitutes a serious drawback. Not only are there quantitative differences between
2D and 3D dynamics, as is expected, but they sometimes differ qualitatively. One example is the capillary instability of a
thread in 3D contrasted with the stability of a 2D sheet. Besides, the most interesting feature of the physical problem might
be accessible only in 3D. For instance, the stratified flow of two fluid components in a pipe is subject to distortion of the
interface. A particularly intriguing phenomenon is viscous encapsulation, whereby the less viscous component encircles
the more viscous one [26]. In this geometry, a lubrication approximation that ignores the variation along the axis of the pipe
will decouple the shear of the primary flow and the secondary flow in the cross-section that would distort the interface [27].
Hence, viscous encapsulation in stratified Newtonian fluids can only be probed by fully 3D computations. Finally, applica-
tions to engineering problems will inevitably involve complex 3D geometries.

This work represents an extension of the two-dimensional AMPHI to a full 3D version AMPHI3D. It involves upgrading the
solver and mesh generation modules to 3D, and properly integrating the two. In this paper, we will describe the theoretical
models and computational algorithm, and present solutions of benchmark problems as validation. As before, we are espe-
cially interested in interfacial dynamics of complex fluids with non-Newtonian rheology. If our recent 2D computations illus-
trated the potential of the AMPHI algorithm, the 3D version promises a broader range of applications, with opportunities to
explore intriguing physics in more complex problems.
2. Theory and numerical method

2.1. Diffuse interface model

The diffuse–interface method as applied to two-phase flows has been described by a number of authors [15,16,28]. Yue
et al. [7,11] have shown how the model can be extended to non-Newtonian fluids, and developed the AMPHI algorithm in
two dimensional geometries based on finite elements with adaptive meshing [20]. The main ideas of the 3D algorithm are
close to those in 2D. In this section, we will briefly summarize these ideas and give the governing equations, using the mix-
ture of a Newtonian and an Oldroyd-B fluid as an example. The method accommodates other types of complex fluids such as
nematic liquid crystals [11,23,24,29,30], but we will confine this paper to Newtonian–Newtonian and Newtonian–Oldroyd-B
mixtures.

Consider a Newtonian fluid in contact with an immiscible viscoelastic Oldroyd-B fluid. Their interface may intersect a so-
lid wall to produce a three-phase contact line. The moving contact line presents a well-known stress singularity, and the dif-
fuse interface provides a particularly attractive regularization scheme. Thus, we will include the contact line in the general
formulation, and compute the spreading drop as one of the benchmark problems. In the diffuse interface framework, the
Newtonian and Oldroyd-B components mix to some extent in a very thin interfacial region and store a mixing energy fmix.
In addition, each component interacts with the solid substrate with a fluid–solid surface energy fw. An Oldroyd-B fluid is
a dilute suspension of polymer chains, modeled as linear Hookean dumbbells, in a Newtonian solvent [31]. Thus, there is
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a bulk energy fd in the Oldroyd-B component due to the dumbbells. We introduce a phase-field variable / such that the con-
centrations of the Oldroyd-B and Newtonian components are ð1þ /Þ=2 and ð1� /Þ=2, respectively. Now the total free energy
ftotal may be written as:
ftotal ¼
Z

X
fmixð/;r/ÞdXþ

Z
@Xw

fwð/ÞdAþ
Z

X
fd dX; ð1Þ
where X and @Xw denote the fluid domain and the solid substrate.
For the mixing energy, we adopt the familiar Ginzburg–Landau form [32]:
fmixð/;r/Þ ¼ 1
2

kjr/j2 þ k

4�2 ð/
2 � 1Þ2; ð2Þ
where k is the mixing energy density with the dimension of force, and � is a capillary width indicative of the thickness of the
diffuse interface. As �! 0, the ratio k=� produces the interfacial tension r in the classical sense [7,16]:
r ¼ 2
ffiffiffi
2
p

3
k
�
: ð3Þ
The wall energy in diffuse–interface form [14,33,34] is
fwð/Þ ¼ �r cos hS
/ð3� /2Þ

4
þ rw1 þ rw2

2
; ð4Þ
where rw1 and rw2 are the fluid–solid interfacial tensions for the two fluids, and they determine the static contact angle hS

through Young’s equation:
r cos hS ¼ rw2 � rw1: ð5Þ
Finally the free energy of the viscoelastic fluid
fd ¼
1þ /

2
n
Z

R3
kT ln Wþ 1

2
HQ � Q

� �
WdQ ; ð6Þ
where n is the number density of dumbbells, k is the Boltzmann constant, T is temperature, H is the elastic spring constant,
WðQ Þ is the configuration distribution and Q is the vector connecting the ends of the spring [31].

A variational procedure applied to the total free energy yields the stress tensor for the system, with contributions from
the elastic springs and the interface. Thus, the equations of motion can be written as:
r � v ¼ 0; ð7Þ

q
@v
@t
þ v � rv

� �
¼ �rpþr � lðrv þrvTÞ

� �
þ 1þ /

2
r � sd þ Gr/þ qg; ð8Þ
where q ¼ 1þ/
2 q1 þ 1�/

2 q2, q1 and q2 being the densities for the Oldroyd-B and Newtonian components, and

l ¼ 1þ/
2 ls þ

1�/
2 ln;ls being the viscosity of the Newtonian solvent in the Oldroyd-B component and ln the viscosity of

the Newtonian component. G ¼ d
R

fmixdX

d/ ¼ k �r2/þ /ð/2�1Þ
�2

h i
is the chemical potential and g is the gravitational acceleration.

Note that for simplicity, we have adopted an incompressible formalism, which differs slightly from the quasi-compressible
model of Lowengrub and Truskinovsky [15]. The results are unaffected as long as the interface is thin enough for the sharp-
interface limit to be approached. The interfacial stress Gr/ is the diffuse–interface representation of the interfacial force on
the fluids [7]. The elastic stress sd due to the dumbbells obeys the Maxwell equation [7,20]:
sd þ kHsdð1Þ ¼ lp½rv þ ðrvÞT �; ð9Þ
where the subscript (1) denotes the upper convected derivative, kH is the relaxation time, and lp is the polymer viscosity.
Finally, the evolution of / is governed by the Cahn–Hilliard equation:
@/
@t
þ v � r/ ¼ cr2G; ð10Þ
where c is the mobility [7]. Eqs. (7)–(10) form the governing equations for our two-phase system. For discretization using
second-order finite elements, the fourth-order Cahn–Hilliard equation is decomposed into two second-order equations
[20,35].

The governing equations are supplemented by the following boundary conditions on the solid wall @Xw:
v ¼ vw; ð11Þ
n � rG ¼ 0; ð12Þ
kn � r/þ f 0wð/Þ ¼ 0; ð13Þ
where vw is the wall velocity and n is the unit normal to the boundary. The first is the no-slip boundary condition, which
implies that the motion of the contact line is solely due to the Cahn–Hilliard diffusion. The second condition is zero flux
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through the solid wall, which helps conserve the mass for each fluid component. The third is the natural boundary condition
from the variation of the wall energy fw, and L ¼ kn � r/þ f 0wð/Þ represents the surface chemical potential. Thus, this con-
dition stipulates that the fluid layer be always at equilibrium with the solid substrate, and the dynamic contact angle remain
on the leading order at the static value hs [14,33]. Eq. (13) can be generalized to account for relaxation of / in the near-wall
fluid layer, which will allow the dynamic contact angle to deviate from hs. For the simplest case of a constant fw ¼ rw1 ¼ rw2,
the static contact angle hs ¼ p=2 and the two fluid components interact equally with the solid substrate. Non-90� contact
angles will be specified by a non-constant fwð/Þ.

The AMPHI3D algorithm has the same structure as its 2D precursor: a finite-element flow solver integrated into an adap-
tive meshing scheme. The former is based on a Navier–Stokes solver that Hu et al. [36,37] have developed for simulating
particle motion in Newtonian and viscoelastic fluids, while the latter is based on the mesh generator GRUMMP developed
by Ollivier-Gooch and coworkers [38].

2.2. Numerical implementation

The discretization of the governing equations follows the standard Galerkin formalism [36], and the weak forms of the
governing equations are similar to those given by Yue et al. [20].

The boundary conditions can be summarized as:
v ¼ u; on @Xu; ð14Þ
ð�pI þ sÞ � n ¼ 0; on @Xs; ð15Þ
sd ¼ sin; on @Xin; ð16Þ

r/ � n ¼ �1
k

f 0wð/Þ; on @Xw; ð17Þ

rðwþ s/Þ � n ¼ 0; on @X; ð18Þ
where @X ¼ @Xu
S
@Xs and @Xu

T
@Xs ¼ ;, and @Xin is the inflow boundary. For stationary walls, u ¼ 0. Note that Eq. (17) is a

natural boundary condition that is easily incorporated into the finite-element formulation.
For spatial discretization, we use piecewise quadratic (P2) elements for v ;/ and w, and piecewise linear (P1) elements for

p and sd on an unstructured tetrahedral mesh. For time marching, we use a second-order, fully implicit scheme. The nonlin-
ear algebraic system that results from the finite-element discretization is solved by an inexact Newton’s method. Within
each Newton iteration, the sparse linear system is solved by preconditioned Krylov methods such as the generalized mini-
mum residual (GMRES) method and the biconjugate gradient stabilized (BCGSTAB) method.

2.3. Adaptive mesh generation

To achieve high numerical accuracy at a moderate computational cost, we need a mesh with dense grids covering the
interfacial region and coarser grids in the bulk. This is particularly important to a diffuse–interface algorithm, since the inter-
face must be thin enough to attain the sharp-interface limit and yet be adequately resolved for the interfacial forces to be
computed accurately. We deploy an Eulerian mesh in space, with a ‘‘ribbon” of refined grids covering the interfacial region.
As the interface moves out of the fine mesh, the mesh in front is refined while that left behind is coarsened. Such adaptive
meshing is achieved by using a general-purpose mesh generator GRUMMP. We have used the 2D version of GRUMMP in our
2D AMPHI algorithm [20], and will summarize the main ideas of GRUMMP and emphasize features unique to 3D meshing.
For further details on GRUMMP, interested readers may consult the work of Ollivier-Gooch et al. [39,40]

GRUMMP generates a mesh by using Delaunay refinement, and controls the spatial variation of grid size using a scalar
field LS, which specifies the intended grid size at each location in the domain. In our study of interfacial dynamics, the grid
size should be finest in the interfacial region, and gradually coarsens away from the interface. Thus, it is natural to define LS

using the phase-field variable /. The scheme that we previously devised [20] for meshing 2D domains turns out to work
equally well for 3D domains:
LSðx; y; zÞ ¼
1

jr/j
ffiffi
2
p

C þ 1
h1

; ð19Þ
where h1 is the mesh size in the bulk, and the constant C controls the mesh size in the interfacial region. As / varies between
±1 across the interface, which has a thickness of several � [7], LS takes a value h1 � C � � at the interface. In this paper, we have
used C values between 0.5 and 1; results will show that good mesh resolution is achieved with h1 6 �. As the diffuse interface
has a thickness of roughly 7:5�, it typically comprises some 10 grid points [7,20]. In addition, the far-field mesh size h1 can
be set to different values h2 and h3 in the two bulk fluids. This will allow, for instance, the interior of a drop to be more finely
resolved than the far field of the suspending fluid. In practice, LS is used in combination with a user-specified ‘‘grading factor”
that determines how rapidly the grid size increases away from the interface.

GRUMMP produces tetrahedral elements in 3D based on LS, following the scheme of Shewchuk [41] but with several sig-
nificant improvements in the areas of cell size and grading control [39]. It begins with enclosing the computational domain X
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inside a large box and implementing an initial tetrahedralization that incorporates all vertices on the domain boundary @X
into the mesh. Then tetrahedra outside X are discarded. Shewchuk [41] has shown that for common shapes of X, the surface
@X does have a constrained Delaunay tetrahedralization, which means that the surface mesh can be generated. Next, for ele-
ments that are too large relative to the local LS value, and for badly shaped elements, Watson point insertion [42] is per-
formed at the tetrahedral circumcenter. This is implemented by using a priority queue listing all elements based on size
and shape. For each tetrahedron, a size measure ML and a shape measure MS are computed:
Fig. 1.
drawn.
interfac
ML ¼
2ffiffiffi
3
p � r

LS
; ð20Þ

MS ¼
ffiffiffi
6
p

4
� lmin

r
; ð21Þ
where r is the circumradius, lmin is the shortest edge of the tetrahedron, and LS is the average of the LS values on all its ver-
tices. Elements with a larger ML or a smaller MS receive higher priority for point insertion. This scheme limits the ratio lmin=r
to above 0.5 with sufficiently smooth grading, i.e., with gradual spatial variation of the element size. However, in three
dimensions, this lower bound on lmin=r is not sufficient for eliminating all large-aspect-ratio tetrahedra, which can degrade
the accuracy of finite-element solutions of partial differential equations. To address this, the mesh is post-processed by
swapping edges and shifting certain vertices. In our experience, this eliminates all poorly shaped tetrahedra from the mesh.
Fig. 1 shows an example of the mesh inside a cube containing an ellipsoid. Because of symmetry, only one eighth of the phys-
ical domain is meshed.

In Fig. 1(b) the interface is covered by a layer of the finest grids. But in dynamic simulations, the interface will in time
move out of this layer into coarser grids. Before this happens, GRUMMP is called to refine and coarsen the neighboring re-
gions upstream and downstream of the moving interface, respectively, by point insertion and removal. The solution of the
last time step is then projected onto the new grid for time integration. Typically, such remeshing takes place roughly once
every 10 time steps. The adaptive coarsening and refinement scheme is similar in principle to the previous 2D implemen-
tation, and more details can be found in Yue et al. [20] We also use the normal speed of the interface to constrain the time
step so that the interface does not advance more than a whole element at one time step.

To a large extent, the size of the mesh limits the magnitude of the problems that can be simulated by AMPHI3D. For in-
stance, the maximum number of tetrahedra for a machine with 10 GB memory is around 150,000. The large memory require-
ment arises from the fully implicit scheme for solving the Navier–Stokes, Cahn–Hilliard and constitutive equations. On a
3.4 MHz CPU, each time step takes roughly 5 min (mostly expended on inverting the linear system), and a typical simulation
lasts 10 days.
3. Results and discussion

In this section, we will present the numerical results for four problems: drop retraction from an elongated spheroidal ini-
tial shape, drop deformation under elongational flow, drop spreading on a partially wetting substrate, and viscoelastic drop
retraction. The results are compared with those from the 2D axisymmetric simulations where appropriate as well as those in
the literature. It serves to validate the numerical scheme and to demonstrate the capabilities and limitation of our tools. The
physical background for the benchmark problems is such that inertia is unimportant in all of them. Thus, this aspect of the
code is not probed in this study. We have previously computed axisymmetric flows in which inertia figures prominently
[20,21].
(a) An unstructured tetrahedral mesh generated by GRUMMP with interfacial refinement. For clarity only surface grids on the coordinate planes are
The parameters are: interior mesh size h2 ¼ 0:25, outer boundary mesh size h3 ¼ 1, and interfacial mesh size h1 ¼ 0:02. (b) A magnified view of the
ial region. The solid curves indicate the ellipsoidal surface.
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3.1. Retraction of elongated drop

Drop retracting from an elongated initial shape to a sphere in a quiescent matrix has received much attention as an exper-
imental method for measuring the interfacial tension [43–46]. This is a good benchmark problem for us for two reasons.
First, the retraction is driven only by the interfacial tension. Thus, it is a sensitive test on how accurately our 3D algorithm
resolves the interfacial layer and computes the interfacial force. Second, the geometry is axisymmetric, and we can compare
the 3D results to high-accuracy 2D axisymmetric results. Fig. 2 shows the portion of the computational domain that contains
the drop. Because of symmetry only one-eighth of the physical domain needs to be computed. The size of the domain is
5R0 � 5R0 � 5R0 where R0 is the radius of the undeformed drop. The drop is located at the center of the physical domain,
which is at one corner of the computational domain. We used symmetry conditions (zero normal velocity and zero shear
stress) on the three coordinate planes, and stress-free conditions on the far-field boundaries. Initially, the major and minor
axis of the drop are a ¼ 1:5625R0 and b ¼ c ¼ 0:80R0. In drop retraction experiments, the fluids are typically highly viscous
and the retraction speed is very low. Thus, we have neglected inertia in our computations. Since there is no externally im-
posed velocity in the problem, the only time scale is the capillary time tc ¼ lmR0=r. Three dimensionless parameters may be
constructed: the viscosity ratio b ¼ ld=lm, with the subscripts d and m denoting the drop and matrix, respectively, the Cahn
number Cn ¼ �=R0 that indicates how thin the diffuse interface is, and the Peclet number Pe ¼ rR0�2=ðldckÞ that indicates
the magnitude of the Cahn–Hilliard diffusion.

As alluded to at the beginning, an accurate diffuse–interface solution requires that the interface be thin enough to approx-
imate the sharp-interface limit, and that the thin interface be resolved by a sufficient number of grid points. These conditions
may be called, respectively, model convergence and mesh convergence. For the mesh convergence tests, we fix the Cahn
number Cn ¼ 0:05 and vary the interfacial mesh size h1 by tuning the parameter C in Eq. (19). The bulk mesh sizes h2

and h3 are fixed at 0:35R0 and 0:9R0, as further refinement produces no visible change in the results. To confirm model con-
vergence, we vary the Cahn number down to 0.03. Fig. 3 depicts the retraction of the elongated drop, in terms of the relax-
ation of the drop deformation parameter D ¼ ða� bÞ=ðaþ bÞ, computed using different Cn and h1 values. Fig. 3(a) shows that
mesh convergence is achieved when the interfacial grid size h1 is less than or equal to the capillary width �. This is similar to
the criterion in 2D simulations [20] for various flow conditions. Fig. 3(b) demonstrates that the model prediction converges
to the sharp-interface limit when Cn 6 0:05. This is a surprisingly lax criterion; the value 0.05 is not only much larger than
for typical physical problems with real interfaces, but is above the critical value ðCn � 0:01Þ previously determined for 2D
simulations [20]. The reason is that the retraction is a very mild flow that does not stretch and distort the interfacial profile
strongly. In more severe flow situations, such as drop deformation in an elongational flow (see Section 3.2 below), model
convergence requires a more stringent threshold.
Fig. 2. The geometric setup for computing drop retraction. The computational domain is one-eighth of the physical geometry and symmetric boundary
conditions are imposed on all three directions. Note that this figure shows only a small proportion of the actual computational domain.



Fig. 3. Retraction of an elongated drop computed using AMPHI3D. (a) Convergence with respect to mesh resolution at Cn ¼ 0:05. The three lines practically
overlap. (b) Convergence with respect to the interfacial thickness in the diffuse–interface model. Time is scaled by lmR0=r, and the viscosity ratio b ¼ 1.
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Once the sharp-interface limit is achieved, the mobility c and the Peclet number Pe matter little to the results. For in-
stance, we have varied Pe between 2357 and 9428 in Fig. 3, with virtually no effects on the model-converged simulations.
This is because the / profile remains at the equilibrium state when the interface becomes sufficiently thin. As long as the
correct interfacial tension is produced, details of the Cahn–Hilliard diffusion within the thin interface are irrelevant to the
retraction of the drop. This contrasts the drop spreading problem in Section 3.3, where the speed of the moving contact line
is determined by the magnitude of Cahn–Hilliard diffusion.

Now that we established the thresholds for model and mesh convergence, we study the effect of the viscosity ratio b on
drop retraction, and compare the results with 2D axisymmetric simulations and experimental data. Both � and h1 are as-
signed 0:03R0, which implies Cn ¼ 0:03. The other two grid sizes are h2 ¼ 0:35R0 inside the drop and h3 ¼ 0:9R0 in the matrix.
The generated mesh has 194,829 tetrahedra and 35,910 vertices. The computational results are shown in Fig. 4 for three b
values. The drop retracts more quickly for lower b. Note that time is scaled by the capillary time tc ¼ lmR0=r based on the
matrix viscosity. The effect of b implies that the retraction is slowed down by drop-phase viscosity, which is not surprising.
For the moderate b values tested, much of the retraction occurs within several tc . Since the process is governed by the com-
petition between interfacial tension and viscosity, tc is indeed the proper time scale. Besides, we have carried out 2D axisym-
metric computations using the same geometric and physical parameters. The agreement between 2D and 3D computations
is excellent for all three b values; this may be taken as a validation of the accuracy of the 3D algorithm.
Fig. 4. Comparison between 2D and 3D predictions of drop retraction for three different viscosity ratios. Time has been made dimensionless by the capillary
time tc ¼ lmR0=r.
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Guido and Villone [47] measured drop retraction in Newtonian fluids, and compared the data with a small-deformation
theoretical formula:
Fig. 5.
its orig
D ¼ D0 exp � 40ðbþ 1Þ
ð2bþ 3Þð19bþ 16Þ t

� �
; ð22Þ
where D0 is the initial deformation parameter, and time has been made dimensionless by tc ¼ lmR0=r. Eq. (22) predicts an
exponential relaxation of DðtÞ as well as a particular dependence on the viscosity ratio b. Thus, the data should fall on a
straight line in a semi-log plot, whose slope would then allow a straightforward calculation of the interfacial tension r. This
is the basis for using drop retraction for measuring r. Plotting their data as ln D versus t, Guido and Villone found that the
straight line prevails only after D has fallen below a value of 0.09. This is little surprise since Eq. (22) derives from a small-
deformation theory. Thus, Guido and Villone [47] have taken D0 ¼ 0:09 to be the start of the exponential relaxation.

In Fig. 5, we compare our computations for three viscosity ratios with the experimental data of Guido and Villone [47] and
the small-deformation theory (Eq. (22)). Following these authors, we have shifted the origin of time to when D falls to the
threshold of 0.09, and rescaled time by the viscosity ratio b according to the formula. Three interesting observations can be
made. First, the numerical results for b ¼ 0:5, 1 and 2 collapse almost perfectly onto a single master curve. Thus, the depen-
dence of drop retraction on b is precisely as prescribed by Eq. (22); this is true even for the initial stage of retraction where D
is large and the equation is not expected to hold. Second, there is excellent agreement between our numerical results and the
experimental data in the range where the two overlap, down to lnðD=D0Þ � �2. This provides another validation for AM-
PHI3D. Finally, our data fall on the straight line representing Eq. (22) only for an intermediate range. The initial stage, as ex-
plained above, deviates from the formula because D is too large. However, toward the end of the retraction ðlnðD=D0Þ < �2Þ,
our results again show slower retraction than the theoretical prediction. This is a numerical artifact due to inadequate mesh
resolution. By this time, the drop is nearly spherical ðD � 1:2� 10�2Þ; its surface deviates from the perfect sphere by less
than the grid size. Thus it becomes difficult to compute the interfacial motion accurately. Therefore, Fig. 5 has validated
the diffuse–interface model and the AMPHI3D algorithm, but in the meantime indicated the limit of the code in terms of
mesh resolution.
3.2. Drop deformation under elongation

The purpose of this subsection is to explore the effect of the Cahn number Cn in a stronger flow than drop retraction. By
comparison with 2D axisymmetric results, we establish the upper limit of Cn for acceptable results. This is a fundamental
issue with diffuse–interface simulations, which typically use an artificially large capillary width �. It is only after � and
the Cahn number Cn fall below threshold values that the results no longer depends on �, and the numerical simulation
has converged to the sharp-interface limit. In our prior 2D calculations, the threshold Cn for such model convergence is typ-
ically of order 10�2. For each �, one must ensure that the grid is sufficiently fine to achieve mesh convergence. Prior 2D com-
putations [20] showed that the size of the fine grid at the interface should be h1 ¼ � or smaller. This has been confirmed for
3D computations as well (cf. Fig. 3(b)). So we will focus on the effect of Cn in the following.

For a drop deforming in a uniaxial extensional flow, the computational domain is similar to that in Fig. 2. The domain size
is 6R0 � 5R0 � 5R0;R0 being the radius of the undeformed drop, with symmetry boundary conditions on the coordinate
Drop retraction: comparison with the experimental data and the small-deformation theory [47]. Time is made dimensionless by ð2bþ3Þð19bþ16Þ
40ðbþ1Þ

lmR0
r , and

in has been shifted to the moment when the instantaneous deformation parameter D ¼ 0:09 to be consistent with the experimental data.
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planes x ¼ 0; y ¼ 0 and z ¼ 0. The uniaxial elongational flow condition is applied on the other three boundary planes at
x ¼ 6R0; y ¼ 5R0 and z ¼ 5R0, on which the velocity is prescribed as ðu; v;wÞ ¼ ð _�x;� _�y=2;� _�z=2Þ; _� being the elongational
rate. For the initial condition, we start with zero-velocity inside the domain and apply the prescribed velocities on the
boundaries. Similar to the drop retraction simulation, we neglect inertia. Then the physical problem is determined by two
dimensionless parameters: the viscosity ratio b and the capillary number:
Fig. 6.
Yue et
Ca ¼ lm
_�R0

r
; ð23Þ
where lm is the matrix viscosity and r is the interfacial tension. For simplicity, we assign equal viscosity to the drop and the
matrix so b ¼ 1.

Fig. 6 compares our 3D numerical results for Cn ¼ 0:02 and 0.03 with 2D axisymmetric results with Cn ¼ 0:02 and 0.01
previously published by Yue et al. [20]. Drop deformation is indicated by the ratio of the drop length L to its initial radius R0.
The results of Hooper et al. [48], using a moving-grid finite-element scheme, is also shown. The general trend is the same
among the five simulations, but there are small quantitative differences. As Cn is reduced from 0.03 to 0.02, the steady-state
deformation decreases by 5% in our 3D computation. This is comparable to previous convergence studies on the 2D version of
AMPHI [20], reproduced in Fig. 6. Thus, Cn ¼ 0:02 is considered the threshold in our context for model-convergent compu-
tations. Our 3D curve at Cn ¼ 0:02 is also in close agreement with the result of Hooper et al. [48], with the steady-state defor-
mation within 1.3% of each other. We did not explore smaller Cn values as we did in 2D, down to Cn ¼ 0:01 and smaller,
because the memory and computational time become highly demanding. For Cn ¼ 0:02, for example, the number of un-
knowns exceeds two million and the memory allocation approaches 10 GB.

The observation that larger Cn leads to somewhat larger steady-state drop deformation has been analyzed by Yue et al. [7]
Essentially, the elongational flow convects the interfacial profile such that the interface becomes effectively thicker near the
tips of the drop. This amounts to a locally reduced interfacial tension, which scales with k=�, and tends to increase the steady
state L. This effect is more prominent for thicker interfaces, and become negligible as the sharp interface is approached. This
also explains why the model-convergence criterion here is more stringent than that for drop retraction. In the latter, the flow
induced by the retraction is weak and does not distort the interfacial profile as much. Thus, the interfacial tension can be
captured accurately with a thicker interface.

3.3. Drop spreading on partially wetting substrate

In this subsection, we consider a drop spreading on a partially wetting substrate. The most important physics here is the
motion of the contact line, which presents a well-known stress singularity that is conventionally removed by assuming ad
hoc conditions such as Navier slip or numerical slip [49,50]. In recent years, the diffuse–interface model has emerged as a
promising alternative that offers a more rational approach to this issue [33,51–53]. While the Cahn–Hilliard dynamics is typ-
ically used as a device for capturing the moving interface, the diffusion across the interface also offers a means to regularize
the stress singularity within the classical no-slip framework. The question is whether the Cahn–Hilliard diffusion adequately
represents the true physics at the contact line. Yue et al. [14] have offered an affirmative answer by showing that the Cahn–
Hilliard model approaches a sharp-interface limit when the capillary width �! 0 while the molecular mobility c and other
Drop deformation under elongational flow: comparison of AMPHI3D computation at different Cahn numbers with 2D axisymmetric computations of
al. [20] and Hooper et al. [48] The other parameters are b ¼ 1; Ca ¼ 0:1; h1 ¼ �, and Pe ¼ 18;856 Cn.
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model parameters are kept constant, and that the model can predict experimental data quantitatively if relaxation of wall
layers is considered. This suggests that the phase-field model may be a useful tool for computing complex flows involving
contact lines. In studying the spread of a drop, our main objective here is to validate AMPHI3D by comparing its predictions
with 2D axisymmetric computations and experiments. Besides, we will also examine physically interesting questions such as
the effect of wettability on the speed of spreading. With a moving contact line, model convergence to the sharp-interface
limit is a subtler affair that depends not only on Cn but also on the mobility c and the viscosities of the components [14].
For the parameters used in this subsection, Cn ¼ 0:03 and 0.04 are sufficiently small.

Fig. 7 depicts the spreading of a drop with a static contact angle of hs ¼ 60�. The surrounding fluid has the same viscosity
as the drop phase, and inertia is neglected. We also neglect gravity so the spreading is driven solely by interfacial forces. We
start with a hemispherical drop on a substrate, with an initial contact angle of 90� (Fig. 7(a)). In time, the drop spreads out on
the substrate, and approaches a steady state of a spherical cap with the prescribed contact angle hs ¼ 60� (Fig. 7(d)).

The effect of hs on the spreading process is demonstrated by Fig. 8. The radius of the ‘‘footprint” of the drop, i.e. the circle
formed by the expanding contact line, grows rapidly at the beginning, and then plateaus toward a steady-state value over a
time period of more than 100tc (Fig. 8(a)). The drop with the smaller hs wets the substrate better and thus spreads more rap-
idly at the beginning. It also produces a larger puddle at the end. The close agreement between 2D axisymmetric simulations
and the 3D ones serves as another validation of the 3D code.

The temporal evolution of the apparent contact angle h is depicted in Fig. 8(b). At t ¼ 0; h ¼ 90� from the hemispherical
initial shape. Once the drop starts to spread, the definition of h becomes somewhat ambiguous. Following Mazouchi et al.
[50], we define h from the slope of the interface at the height of 0:1R0 above the substrate, where the interface is more or
less a straight line. The need for such a subjectively defined quantity is due to the difficulty in determining the so-called
‘‘microscopic contact angle” right on the substrate. Experimentally, the latter cannot be measured, and one necessarily re-
cords the interface some small distance above the substrate. In our diffuse–interface computation, the local phase field is
dynamically perturbed by the flow near the moving, non-equilibrium contact line. Thus, the local orientation of the / con-
tours may not reflect the interfacial orientation in the physically sense [13]. As expected, theta relaxes toward hs, and more
rapidly for the more wetting drop for which the initial contact angle of 90� constitutes a greater deviation from the minimum
energy equilibrium state. Owing to its definition, the apparent contact angle h is slightly below hs at the end of the spread.

Drop spreading on a substrate with partial wetting condition has been studied previously by many researchers. For exam-
ple, Zosel [54] measured the spreading of drops of polymer solutions on a partially wetting substrate. Khatavkar et al. [52]
simulated the capillary spreading of Newtonian droplets using the diffuse interface method in 2D axisymmetric geometry,
and compared the numerical results with Zosel’s experiment. For comparison, we have simulated the same problem in 3D
using the same parameters.
Fig. 7. The evolution of drop spreading on a substrate with static contact angle of 60�. (a) t ¼ 0, (b) t ¼ 5:50, (c) t ¼ 20:5, (d) t ¼ 145:5. Time is scaled by
tc ¼ lmR0=r, where R0 is the radius of the initial hemisphere. Cn ¼ 0:03; h1 ¼ �; Pe ¼ 2828.



Fig. 8. Effect of the static contact angle hs on drop spreading. (a) Growth of the radius of the ‘‘footprint” of the drop in time. 3D and 2D axisymmetric results
are in excellent agreement. (b) Relaxation of the apparent contact angle h toward hs . Though not plotted, the 2D results for h essentially overlap the 3D
curves. The other parameters are the same as in Fig. 7.
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Fig. 9 plots the increasing radius rðtÞ of the contact line for the three studies. The initial condition differs from that in
Fig. 7(a) in that a full spherical drop is deposited on the substrate, which then proceeds to spread. In the experiment, the
viscosity ratio b exceeds 103. Such values make numerical convergence difficult in diffuse–interface computations. The
numerical experiments of Khatavkar et al. showed that as b gets as large as 100, the result becomes very insensitive to b,
and they compared numerical results for b ¼ 100 with the experiment of Zosel [54]. We will do the same by using
b ¼ 100. The static contact angle hs ¼ 56� in the experiment is implemented in the computations, and we use the same
Cn ¼ 0:04 as Khatavkar et al. The mobility parameter c in the Cahn–Hilliard equation cannot be easily related to experimen-
tal values. Khatavkar et al. found that good fit with the experimental data can be obtained using a c that corresponds to a
Peclet number Pe ¼ 500.

In our 3D computations, the spreading at Pe ¼ 500 occurs faster than the experimental data and the axisymmetric result
of Khatavkar et al. Instead, reasonable agreement with the experiment is obtained for a larger Pe ¼ 5000. The larger Pe or
smaller c reduces the Cahn–Hilliard diffusion at the contact line, and slows down its motion. The reason for the discrepancy
between the two computations is not clear at present. The qualitative trend is the same in all three studies. The droplet
spreads quickly when it initially touches the substrate ðt < 1Þ. In this stage, the upper part of the drop hardly deforms;
the bottom of the drop opens up and spreads rapidly. After that, there is a roughly logarithmic regime ð1 < t < 10Þ during
which the drop spreads against the viscous force. In the end, the drop slowly approaches the steady state.
Fig. 9. Comparison of our drop spreading simulations with the experiment of Zosel [54] and the diffuse–interface computation of Khatavkar et al. [52]. The
static contact angle hS ¼ 56� for all results. Cn ¼ 0:04 and b ¼ 100 in both our computations and that of Khatavkar et al. Time has been made dimensionless
by the capillary time ldR0=r;R0 being the radius of the spherical drop at the start.
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3.4. Viscoelastic effects on drop retraction

We have also studied the effect of viscoelasticity in the 3D code by simulating a viscoelastic drop retracting from an elon-
gated shape in a Newtonian medium. The geometric setup is the same as the one with the Newtonian system in III.A. The
viscoelastic fluid is represented by the Oldroyd-B model [31] based on a dilute suspension of elastic dumbbells in a Newto-
nian solvent. Yue et al. [6] have simulated retraction of Oldroyd-B drops in a Newtonian matrix in planar 2D geometry. The
main finding is that a viscoelastic drop initially retracts faster than a Newtonian one having the same steady-shear viscosity,
but eventually falls behind and returns to the spherical shape in longer time than its Newtonian counterpart. The purpose of
the current simulations is twofold. The first is to validate the 3D code using 2D axisymmetric simulations. The second is to
confirm the physical effects of viscoelasticity on drop retraction previously observed in 2D planar calculations.

The magnitude of viscoelasticity is customarily represented by a Deborah number, the ratio between the polymer relax-
ation time and a flow time. For a drop retracting in a quiescent fluid, the only time scale is the capillary time tc ¼ lmR0=r, and
thus our Deborah number is defined as
Fig. 10
tc ¼ lm

size h3

axisym
De ¼ kHr
lmR0

: ð24Þ
We set the polymer viscosity lp to be equal to the solvent viscosity ls, so that the retardation–relaxation time ratio is 0.5. We
compare the viscoelastic drop retraction with that of a Newtonian drop whose viscosity ld matches the total viscosity
lp þ ls. In both cases, this is also the viscosity of the suspending Newtonian medium. Using these physical parameters,
we have done the 3D computation using three grids that differ in the mesh size h2 inside the drop. The results are compared
with the 2D axisymmetric computation and the Newtonian result in Fig. 10.

First, convergence with mesh refinement within the drop is evident from the fact that the 3D curves approach the 2D axi-
symmetric one with decreasing h2. In this problem, a sufficiently fine h2 is important for resolving the viscoelastic stress field
inside the drop. Moreover, the threshold for mesh convergence, h2 ¼ 0:1R0, is more stringent than its Newtonian counterpart
(e.g., h2 ¼ 0:35R0 in Section 3.1). This is probably because the viscoelastic stress tensor is discretized on piecewise linear P1
elements while the velocity uses P2 elements. Second, the viscoelastic drop retracts faster initially than the Newtonian one,
but approaches the spherical shape more slowly in the end. This is qualitatively the same as previously shown in 2D planar
geometry [6]. The underlying mechanism is the development of the viscoelastic stress inside the drop. As the drop starts to
retract, the flow inside causes the polymer elastic stress to grow from zero on the time scale of the relaxation time kH . Thus,
for t < kH , the retraction of the viscoelastic drop is faster than that of the Newtonian drop since the polymer stress has yet to
develop fully. After that, the elastic stress grows to such an extent that the total stress surpasses its counterpart in the vis-
cous Newtonian drop. The retraction of the viscoelastic drop, as a result, is hampered by the developed elastic stress for
t > kH . For the viscoelastic drop in Fig. 10, the Deborah number De ¼ 10 implies kH ¼ 10tc . The crossover between the New-
tonian and viscoelastic curves at 7:5tc ¼ 0:75kH may be taken as a rough corroboration of the above argument. Of course, the
level of stress inside the drop correlates more with the instantaneous speed of retraction than with D. Thus, the crossover in
D does not precisely correspond to a crossover in the internal stresses.
. Retraction of a viscoelastic drop from a spheroidal initial shape with D0 ¼ 0:323. Cn ¼ 0:03; De ¼ 10. Time t has been made dimensionless by
R0=r. The 3D viscoelastic computations have been done on three grids that have the same interfacial mesh size h1 ¼ � ¼ 0:03R0 and far-field mesh
¼ R0 in the matrix, but different mesh size inside the drop: h2 ¼ 0:35R0;0:2R0 and 0:1R0. The 3D Newtonian run uses h2 ¼ 0:2R0 and the 2D
metric viscoelastic run has h2 ¼ 0:1R0, both having the same h1 and h3 given above.
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4. Conclusion

This paper describes AMPHI3D, a 3D finite-element algorithm for simulating two-component rheologically complex fluids
using a diffuse–interface formulation. A generalization of our previous 2D work, this code features an implicit solver for the
Navier–Stokes and Cahn–Hilliard equations and a versatile adaptive meshing scheme that allows adequate resolution of the
interfacial region at relatively low computational cost.

We have applied AMPHI3D to four benchmark problems: the retraction of an elongated viscous drop in a quiescent fluid,
the deformation of a drop in a uniaxial extensional flow, the spread of a drop on a partially wetting substrate, and the retrac-
tion of a viscoelastic Oldroyd-B drop. In each case, we have used numerical and experimental results in the literature to ver-
ify AMPHI3D computations. Since all four problems have axisymmetry, we have also used 2D axisymmetric computations as
benchmarks. This procedure has established the critical interfacial thickness for proper convergence of the diffuse–interface
model to the sharp-interface limit, as well as the level of grid refinement that ensures adequate spatial resolution. For
parameters within these limits, AMPHI3D simulations are in excellent agreement with the benchmark results. This serves
as a validation of the theoretical model and the numerical algorithm.

The focus of this work is on the AMPHI3D methodology rather than detailed exploration of the physics involved. But it is
clear that this code can be fruitfully applied to many interesting problems that are beyond the reach of two-dimensional
studies. One limitation for the current package, however, is that it is a single-processor serial code. For large-scale problems,
the coupled solution of the Navier–Stokes and Cahn–Hilliard equations requires a large memory. Parallelization may help
expand its capacity for large-scale 3D computations.
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